The phenomenon of learning generalization - where an organism repeats
behavior learned in response to one stimulus when presented with a perceptually
similar stimulus - has been well documented in a variety of animals.
I argue that evolutionary game theory can help explain the prevalence of
this type of learning behavior by showing how and when generalization can
outperform other strategies in situations where there are payoff similarities
between states.
Jäger (2007) introduced Sim-Max games, a variation of the standard
Lewis signaling game where the state space is endowed with a metric that
captures a similarity relation over states of the world. This added structure
is manifested in payoffs that reward behavior in both the ideal state for that
behavior as well as similar states. A modication of this game can be used
as a good model to explore the success of learning generalization in single
organism situations.
I show that in these games learning generalization can sometimes outperform
simple reinforcement learning. However, it does not do so in all
cases. My results highlight an interesting tension. The strategies developed
by generalizing learners are necessarily imprecise, and thus perform less well
than ideal strategies in these games. However, learning generalization allows
actors to develop a fairly successful strategy very quickly. I show that
generalization can be expected to evolve in cases where organisms need to
learn how to act in many different states over a short time scale.
References
Jager, Gerhard (2007). "The evolution of convex categories." Linguistics and
Philosophy, 30, 551-564.
- Presentation