Why is Metaphor like a Model? Epistemic and Cognitive Uses of Scientific Metaphors

Ehud Lamm*1
${ }^{1}$ Tel Aviv University - The Cohn Institute for the History and Philosophy of Science and Ideas Humanities Faculty Tel Aviv University Ramat Aviv, Tel Aviv 69978, Israel

Abstract

Session: The Role of Metaphor in Evolutionary Reasoning (Greg Priest, Jessica Riskin, Ehud Lamm) Simply put, modeling involves studying one system - primarily via the ability to manipulate it - as a means for studying another. I argue that manipulability is the hallmark of models, which are meant to provide a way for studying modeled systems via the manipulations of their models rather than by manipulating the original system. Manipulability requires that the model have an organized, ideally well-specified, articulated fine structure. Literary metaphors, as well as scientific metaphors invoked merely to rhetorical effect, need not exhibit the structure required in order to support internal manipulability. But sometimes they do. I will explore several rich metaphors, in science and literature, particularly those used by Richard Goldschmidt to articulate his theory of the gene, and argue that they are best understood as models. Viewing them as models provides the best way to understand the function of the metaphors. Seeing what viewing them as models entails helps adjudicate differing accounts of what models are. In particular, similarity between a model and the modeled system is required by some accounts of scientific models, but the notion is fraught with difficulties (Goodman; Suarez). Metaphors are typically too ambiguous and open-ended to establish a robust similarity relation. On the alternative account I endorse the relationship between model and system is reflected, or even constituted, by the manipulations the model permits. This relationship is one of exemplification (cf. Elgin). My account explains why metaphors, even those appropriately understood as models, are typically only weak models.

[^0]
[^0]: *Speaker

